martes, 20 de septiembre de 2016

UNIDADES DE MEDIDA DE UN ÁNGULO

 
UNIDADES DE MEDIDA DE UN ÁNGULO
 
 
 
Ángulo Espacio comprendido entre la intersección de dos líneas que parten de un mismo punto o vértice.
 
Un ángulo está formado por:
- Lado de un ángulo: cada una de las dos semirrectas.
- Vértice de un ángulo: punto en el que coinciden las dos semirrectas.
- Amplitud: lo más importante del ángulo, es la abertura que hay entre los lados.


TIPOS DE ÁNGULOS

Ángulo llano: mide 180° 
Ángulo nulo: mide 0° 
Ángulo recto mide 90° 
Ángulo agudo mide mas de 0° pero menos de 90°
Ángulo obtuso mide más de 90° pero menos de 180°
Ángulos complementarios, aquel par de ángulos que suman 90°
Ángulos suplementarios, aquel par de ángulos que suman 180°
Ángulos opuestos por el vértice, par de ángulos iguales dos a dos
Ángulos adyacentes, aquellos que están uno al lado del otro y cuya suma es 180°
Ángulos consecutivos, aquellos que están uno a continuación del otro y suman 360
Ángulos formados por una recta secante y dos rectas paralelas: alternos internos, alternos externos, correspondientes.





¿CÓMO MEDIR UN ANGULO?

Positivo:
si se miden en sentido contrario al de las agujas del reloj son positivos



Negativo:
Los ángulos se miden a partir de una semi-recta de referencia, si se miden en sentido de giro de las agujas de reloj son ángulos negativos
Por ejemplo: Un ángulo de 60 grados tiene el mismo lado del terminal como la de un ángulo de 420 grados y un ángulo de -300 grados.

En el siguiente video se ve más a fondo como medir ángulos positivos y negativos en una circunferencia
 


¿Cómo se calculan los ángulos trigonométricamente?

razones trigonometricas
 
 
UNIDADES DE MEDIDA




1) Grado sexagesimal

El grado sexagesimal se creó dividiendo una circunferencia en 360 partes iguales, el ángulo correspondiente a cada una de sus partes es un ángulo de un grado sexagesimal (1°).
Es importante saber que la necesidad de obtener un ángulo más pequeño que un grado  sexagesimal (1°)  se crearon los minutos (’) y los segundos (”)   y  equivalen de la siguiente forma:
  • Un grado sexagesimal  tiene 60 minutos (‘) y un minuto tiene 60 segundos (‘’).
  • Por ejemplo, el ángulo  45° 30’ 55’’    se lee cuarenta y cinco grados, treinta minutos, cincuenta y cinco segundos”.  
 

2) El Radián

El Radián (rad) es la medida de un ángulo cuyo arco mide igual que el radio, para entender esto veamos la figura siguiente:
 
 En términos generales se utiliza el número irracional pi (π)  para hacer la equivalencia entre radianes y grados sexagesimales:
1π rad = 180
 
 
 
Para esto debemos saber:

¿Cómo transformamos grados a radianes?

Supongamos que tenemos  un ángulo de 30 y queremos saber a cuantos radiantes equivale, con una simple ecuación podemos resolver esta incógnita:
Lo que nosotros sabemos es:
Y lo que queremos saber es (nuestra incógnita  x):
 
 

 
 
EJERCICIO RADIANES
 
Traza en una circunferencia 6 segmento y un sobrante.
 
 Materiales:
*disco C-D
*Un trozo de listón
*pinturas de colores
 
Procedimiento:
 
*Primero saque una medida proporcional para que esta se reprodujera 6 veces en la circunferencia y quedara el respectivo sobrante (mi medida fue de 2.5).
*Una vez obtenido el segmento procedí a marcarlo con plumón en el disco.
*Paso siguiente fue aplicar la pintura a cada segmento.
 
 
 
En esta experimentación estamos comprobando que la circunferencia no tiene medida exacta ya que una cierta medida de longitud se reproduce 6 veces proporcionalmente y queda un sobrante que es equivalente a 2 pi.
Que todo esto es igual a un radian.

 
 




No hay comentarios:

Publicar un comentario